
Chapter 6

AUCTIONS

6.1 Introduction and Industry Overview
Auctions provide an alternative means of dynamically adjusting prices

to match market conditions. An auction is simply a set of rules (called a
mechanism) for specifying how information is revealed among customers
and the firm, how goods are awarded to customers, and what payments
are made from customers to the firm based on the revealed information.
They differ from a dynamic posted-price mechanism in that typically
customers are the ones who offer a price they are willing to pay—their
bid—and the firm then decides which bids to accept. However, there are
some auction formats that rather resemble posted pricing, in that the
firm names a price, and customers simply indicate their willingness to
buy at the offered price. As we show below, the prices in an auction
depend both on the number of customers bidding and their valuations
for items—and, not surprisingly, the more customers there are, or the
more each customer values the items, the higher the prices generated
by an auction. In this way, auction prices effectively “adapt” to market
conditions, and hence they are often viewed as price-discovery mecha-
nisms.

Auctions are important both practically and theoretically. On a prac-
tical level, auctions are encountered in many markets, including those for
treasury bonds, livestock, used cars, electricity, foreign exchange, real es-
tate, art and rare collectibles, fish, fresh flowers, industrial procurement,
public-works contracts, and the sale of natural-resource rights (such as
offshore oil and gas leases, logging rights, radio spectrum licenses, and
so on). More recently, auctions have gained popularity with the success
of e-commerce auction sites such as eBay.
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From a revenue management perspective, in particular, auctions have
some appealing features. First, they hold out the potential of achieving
near-perfect, first-degree price discrimination, and although customers
still retain some “information rent” that prevents a firm from capturing
the entire consumer surplus, the revenue benefits over using a single
price—or even second- and third-degree price discrimination—can be
significant. Second, auctions have the potential to directly uncover these
near-optimal prices without the need to estimate customers’ demand
functions or willingness to pay, though this statement again must be
qualified somewhat as we explain shortly. Nevertheless, it is fair to say
that most auction mechanisms generally require less information about
customers than do alternative price-discrimination mechanisms.

On a theoretical level, auctions are important because they provide a
rich framework for studying pricing mechanisms in settings where cus-
tomers act strategically. Indeed, as we show in this chapter, auction
theory can often be used to design optimal mechanisms—that is, mech-
anisms that maximize revenues among essentially all possible pricing
mechanisms, under certain assumptions of course. In other cases, the
theory provides convenient ways to compare the revenues produced by
different pricing mechanisms. Also, the theory is based on a strategic
(rational) consumer model, which adds to the realism of auction models
relative to the (mainly) myopic models studied in Chapter 5.

We first look at some common examples of auctions in practice. Then,
in Section 6.2, we describe the classical auction models and theory. Next,
we look at dynamic auctions, both in the setting of selling a fixed capac-
ity as in Chapter 2 and in a replenishment setting, where the firm orders
and auctions over an infinite horizon as in the inventory-pricing problem
of Section 5.3.2. Finally, we consider network auctions and discuss their
relationship to the network RM problems of Chapter 3.

6.1.1 An Overview of Auctions in Practice
Auctions are used in a wide range of markets, including industrial,

financial, and consumer markets. We briefly survey next each of these
markets in turn.

6.1.1.1 Traditional Auction Houses
Traditional auction houses—the two largest being Christie’s and

Sotheby’s—provide auctions for selling art, antiques, jewelry, wine, and
other rare, high-value collectibles. Both have been doing so for a very
long time indeed; Sotheby’s was founded in 1744 and Christie’s in 1766.
Christie’s is the market leader with sales of $2.3 billion in 2000. Both
use a variation of an ascending, open-price (English) auction. (See Sec-
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tion 6.1.2 below for definitions of these auction types.) As of January
2000, Sotheby’s started offering online auctions. These traditional auc-
tion houses generally limit themselves to high-value items, and their
clientele are largely wealthy individuals and institutional collectors.

6.1.1.2
Auctions have been used for many years in financial markets. Most

government bonds and bills are sold at auctions, which are conducted at
regular intervals to finance national debts. Investors (both institutional
and individual) bid for the minimum interest rate they are willing to
receive. The selling agency then sorts the bids and the bonds or bills
are awarded to the lowest bidders until the desired amount of the issue
is reached.

Auctions are also used by securities exchanges for trading stocks,
bonds and foreign exchange. Typically, these are double auctions in
which bid offers are made by customers and ask offers are made by sell-
ers. A queue of bid and ask offers is maintained and trade takes place
when the highest bid offer in queue exceeds the lowest ask offer in queue.
(The rules for the price paid and how this matching takes place are usu-
ally specific to each exchange.)

6.1.1.3 Government Auctions
Governments use auctions for the sale of many public assets, including

public lands, public industries (privatization sales), and natural-resource
rights. A prominent example is the radio spectrum auctions for third-
generation (3G) cellular phone service in Europe and the United States
These spectrum auctions involved complex combinatorial features, in
which communications companies bid for combinations of geographical
areas to achieve coverage in a given market area. The sale prices pro-
duced by some of these auctions were staggering, and indeed the resulting
debts incurred to finance these purchases have left many of the winning
companies in a precarious financial position.

6.1.1.4 Industrial-Procurement Auctions
Auctions are also used in many industries for procurement of materi-

als, services, and general subcontracting of production. Typically, this
occurs through a request-for-quote (RFQ) process in which a buying
firm details its requirements for a certain input, and selling firms sub-
mit price quotes to supply the input. Factors other than price, such as
quality levels and delivery schedules, are typically important in the final
selection as well.

Financial-Market Auctions
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Online versions of procurement auctions have also increased in the
past several years. In the auto industry, the exchange Covisint was
formed in early 2000 as a joint venture by Daimler-Chrysler, Ford Motor
Company, and General Motors with technology provided by Commerce
One and Oracle. The goal of the exchange is to facilitate integration and
collaboration among suppliers and automakers, with the aim of lower-
ing costs and facilitating more efficient business practices. The Covisint
exchange supports a range of auction formats for procurement. FreeMar-
kets, which has been in operation since 1995, combines software products
with market-making services that help facilitate real-time procurement
auctions over the Internet. The company reports sales transactions of
over $35 billion to date on their reverse-price auction systems and ser-
vices. Many manufacturers also host their own private online auctions
for procurement.

6.1.1.5 Consumer Online Auctions
Online consumer auctions have become popular, largely due to the

success of eBay. eBay provides a platform for users to conduct auctions
to buy and sell a wide range of items—a sort of Sotheby’s OR Christie’s
for the common man.

An immense variety of items are sold on eBay—new, used, and col-
lectibles, by both individuals and small businesses. It is by some mea-
sures, the most popular shopping site on the Internet as of this writing.1

In 2001, eBay transacted more than $9.3 billion in gross merchandise
sales. Most significantly, the company has proven that the Internet can
be used to facilitate communication and trade among geographically dis-
persed individual buyers and sellers, allowing for the sort of real-time
auction mechanisms that in the past required the physical presence of
market participants.

Priceline.com provides a different online auction mechanism. It is
based on what they term a “buyer-driven conditional purchase offer”
mechanism,2 in which customers declare what they are willing to pay
for products and supplying firms accept or reject these offers. In return,
consumers agree to varying degrees of flexibility in the brand and prod-
uct features they receive for their offered price. This mechanism has
proved quite popular as a channel for selling surplus airline seats and
is gaining popularity for products such as discount phone service and
home mortgages.

1For example, in 2000 eBay was the shopping site with the highest number of total user
minutes according to Media Metrix.
2Priceline.com has been granted a United States patent for this invention.
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Priceline is attractive to sellers in large part because the mechanism
does not divulge the identity of the seller until after the purchase of-
fer is accepted. (Customers bid on generic products and features, not
specific brands.) This creates less of a pricing risk for a firm because it
can discount without fear that its discounted prices will become widely
known to other customers and to competitors. This feature produces
brand shielding and such selling formats are often referred to as opaque
channels in industry terminology. However, as we show in Section 6.3.3
below, under certain assumptions, this mechanism theoretically offers
no benefit over list prices. (Priceline.com is discussed further in Chap-
ter 10.)

6.1.2 Types of Auctions
There are a variety of mechanisms one can use to conduct an auction.

For simplicity we focus first on the case of a firm auctioning a single
indivisible good to a group of N customers. We then consider several
variations of these simple, single-unit auctions.

6.1.2.1 Standard Auction Types
There are four common types of auctions for selling a single object:

Open ascending (English) auction In an open ascending auction,
the firm announces a progressively increasing sequence of prices. Cus-
tomers indicate (say by raising their hand or showing a number) their
willingness to buy an item at the announced price. The firm increases
the price until only one customer is left willing to buy at the an-
nounced price. This is the mechanism commonly used to sell art and
valuables at major auction houses such as Christie’s and Sotheby’s.

Open descending (Dutch) auction In an open descending auc-
tion, the firm announces a progressively decreasing sequence of prices.
The first customer to indicate willingness to buy at the announced
price wins the item and pays the current price. The Aalsmeer and
Naaldwijk flower markets in Holland have long used this type of auc-
tion, which explains the name.

Sealed-bid, first-price auction In the sealed-bid, first-price auc-
tion, customers submit sealed bids to the firm. The customer submit-
ting the highest bid wins the auction and pays the amount of his bid.
This form of auction is used (in its minimization form) for awarding
many government contracts.

Sealed-bid, second-price (Vickrey) auction In the sealed-bid,
second-price auction, customers again submit sealed bids, and the
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customer submitting the highest bid wins the auction. However, the
amount the winner pays is equal to the second-highest bid submitted.
While this auction form has certain desirable theoretical properties,
as shown by Vickrey [533], it is somewhat less common in practice.3

These basic auction types can be varied: for example, one may impose
a reserve price or minimum bid increments. Moreover, there are other,
less standard, auction types that are encountered in practice as well,
such as the uniform price auction used in many financial markets. The
above four types, however, are the most common.

An auction is called a reverse auction if customers are competing to
sell to the auctioneer by submitting cost (or willingness to sell) bids
rather than price (or willingness to buy) bids, such as in a procurement
auction. Reverse auctions are essentially equivalent to regular auctions
if we put a “minus sign” on the rewards (one involves maximization of
price while the other involves minimization of cost), and hence we do
not address them separately here.

6.1.2.2 Multiunit Auctions
Multiunit versions of the above auction types can also be defined in the

natural way. For example, suppose the firm has C homogeneous items
to sell and each customer wants only at most one item. Then in the C-
unit open ascending auction, the firm announces increasing prices, and
customers indicate their willingness to pay the offered prices. The price
is increased until only C customers remain and each is awarded an item
at the prevailing price. In an open descending auction, the price declines
until a customer indicates willingness to pay the announced price. The
customer is awarded a unit at that price, and the firm continues to
decrease the price until a second customer is willing to pay the announced
price, and so on until all C units have been awarded.

In a sealed-bid, first-price auction, the C highest bids are accepted,
and each pays his bid; in a sealed-bid, second-price auction, the C highest
bidders are awarded the item and each pays the highest bid.

Again, more complex multiunit auctions exist in practice. For exam-
ple, customers may bid for multiple units. In a sealed-bid, first-price
auction, this is accomplished by having customers submit a demand
schedule—a list of quantities and prices they are willing to pay for each
marginal unit they buy. The firm then awards items to the C highest
marginal values, which may involve awarding multiple units to a sin-

3Though Lucking-Reily [351] points out that the Vickrey auction is more commonly used
than most people realize.
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gle customer. In this chapter, we only consider the simple, single-unit
demand version of multiunit auctions.

6.1.2.3 Combinatorial Auctions
Another complexity in many procurement auctions is that a customer

may require several products simultaneously. For example, to complete
production of a product, a manufacturer may need both metal and plas-
tic resin, or to provide cell phone service in a particular region, a com-
munications company may need licenses in several contiguous regions.
Such problems create dependencies, in which customers are willing to
pay more for certain combinations of items than the sum of what they
would be willing to pay for each item alone.

In such cases, one can construct auctions where the customers submit
bids for various combinations of items rather than individual bids for
each item alone, and the firm must then decide on which combinations to
award based on these bids. Such problems may require solving complex,
combinatorial optimization problems to simply determine the winners of
the auction. Understanding the customers’ behavior in the face of such
complex auctions is quite difficult. We examine one such combinatorial
auction in Section 6.5 below, in which customers bid for “products” that
require a subset of “resources” and the firm has to allocate a finite supply
of these resources to the customers based on their bids. This problem
closely matches the network problems of Chapter 3.

6.2 Independent Private-Value Theory
In this section, we present the basic theory of auctions for the so-

called independent private-value model, which is the most widely studied
in the literature. In addition, we focus here on the revenue-generating
properties of auctions and largely ignore welfare and allocative efficiency
properties. Readers interested in these properties and other extensions
of the basic theory are referred to survey papers by Klemperer [305],
Matthews [366], McAfee [369], and Milgrom [381].

6.2.1 Independent Private-Value Model and
Assumptions

Consider an auction in which we are selling one or more homogeneous
objects to N potential customers. Each customer desires at most one
of the objects. Customer values an object at The valuations
are private information to the individual customers, but it is common
knowledge that are i.i.d. with a distribution F. We assume that
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F is strictly increasing with a continuous density function and has
bounded support on the interval so F(0) = 0 and

Note that the assumption that customers have i.i.d. valuations and all
know F is not equivalent to saying all customers are the same. Indeed,
because customers valuations are draws from a distribution, some cus-
tomers will have high valuations, and some will have low ones; F merely
describes the distribution of valuations in the customer population. In
addition, customers know their valuation; thus, a customer with a high
(low) valuation will know that his valuation is higher (or lower) than av-
erage and will bid accordingly. The assumption of i.i.d. valuations and
symmetry is more precisely a statement about the views the participants
hold about the market. It is equivalent to saying that all customers and
the firm have the same belief about the likely valuations of other cus-
tomers and that there is no discernable difference among customers a
priori.

6.2.2 An Informal Analysis of Sealed-Bid, First-
and Second-Price Auctions

First, to build some initial intuition we start with a somewhat informal
analysis of the sealed-bid, first- and second-price auctions. A formal
equilibrium analysis is then provided in Section 6.2.3.

A key feature of auction models is that they assume customers are
rational; that is, they bid so as to maximize their surplus (the value
of the item minus the price they pay). Hence, for each mechanism we
need to analyze customers’ bids as a function of their valuations—called
their bidding strategy. When formulating his bidding strategy, a ratio-
nal customer will take into account the bidding strategies of the other
customers. Our auction analysis therefore relies on the concept of an
equilibrium set of strategies; that is, a set of strategies such that each
customer has no incentive to change his strategy provided the other cus-
tomers do not change their strategies (Nash equilibrium in game-theory
terminology; see Appendix F).

We are also interested in the revenues produced by a given auction.
These revenues depend on the strategic, equilibrium response of cus-
tomers. So changes in the mechanism will lead to changes in the equi-
librium bidding strategies of customers, which in turn will affect the
revenues the firm generates. Thus, a “good” mechanism induces a more
profitable equilibrium, and this makes the revenue analysis of auctions
qualitatively different from the analyses we have seen in the previous
chapters.
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6.2.2.1 Equilibrium Strategies for a Second-Price Auction
Consider first a single-unit, sealed-bid, second-price auction with N

customers. Recall that in this case each of the N customers submits a
bid, the firm awards the item to the customer with the highest bid, and
the winner pays the value of the second-highest bid. Let
denote the vector of bids submitted by the N customers and let
denote the reverse-order statistic: that is, Hence,

denotes the value of the second-highest bid (the winner’s payment).
A bidding strategy for customer specifies the bid customer will submit
as a function of his valuation and is denoted A bidding strategy
that is an equilibrium strategy is denoted (to denote that it is an
optimal response to the strategies of other customers).

How would a rational customer bid in this type of auction? The
answer, it turns out, is surprisingly simple. Each customer cannot do
better than to simply bid his own valuation that is, the strategy of
bidding is optimal for all customers

To see this, note that the amount the winner pays in a second-price
auction is not affected by his bid since he pays an amount equal to the



250 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

second-highest bid. In other words, a customer’s bid affects whether he
wins but not how much he pays if he wins. Now suppose customer
bids Consider the two possible cases—customer wins or customer
loses—and see whether customer can do better by changing his bid
in either case. The situation is shown in Figure 6.1.

First, consider case (i) on the left of Figure 6.1, where customer
wins the auction by bidding In this case, customer has a surplus
of Now if he increases his bid to it has no effect
because he is still the highest bidder and still pays an amount equal to
the second-highest bid. So customer  cannot do better by increasing his
bid. If customer is a winner and decreases his bid to there is
again no change in his surplus as long as he remains the highest bidder.
However, if—as shown on the left-hand side of Figure 6.1—he lowers his
bid enough to become the second-highest bidder, then he is no longer the
winner and his surplus is zero. Since his surplus was positive beforehand,
this is not an improvement either. Thus, customer cannot do better
than bidding in case (i).

Now consider case (ii) on the right of Figure 6.1, in which customer
bids and loses. Customer surplus in this case is zero because he does
not get the item and pays nothing. Note also in this case, the highest
bid is strictly greater than that is, Now if he decreases
his bid to he remains one of the losers, and his surplus is still
zero. If he increases his bid to again there is no change unless he
increases his bid enough to become the new highest bidder. But in this
case, he must pay an amount equal to the previous high-bidder’s bid,
which is strictly greater than his own valuation (else he would have
been the high bidder originally). So his surplus in this case is negative,
he is worse off. Hence, he cannot do better than bidding in case (ii)
either. Therefore, in both cases (i) and (ii), bidding   is an optimal
decision for customer

Note that this strategy is optimal regardless of the bids placed by other
customers. Indeed, our analysis did not make any assumptions on the
strategies used by other customers; the strategy is optimal for
any realization of competing bids. Such a strategy is called a dominant
strategy, and the set of such strategies is called
a dominant-strategy equilibrium for the auction. (See Appendix F.)

A dominant-strategy equilibrium is a robust equilibrium. It applies
under very general conditions; essentially, we need assume only that
customers have private valuations (the valuation that customer has
for the item is not influenced by the valuations of other customers) and
customers are rational so that they recognize the benefit of this strat-
egy. We need little else beyond these two assumptions. For example,
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customers can have different distributions of valuations, have different
information about the distributions, and may be risk-averse. None of
these change the equilibrium under the second-price mechanism because
of the strong dominance of the bidding strategy.

Under this equilibrium, the firm earns a revenue equal to the sec-
ond reverse-order statistic of the distribution        a quantity that is
not difficult to evaluate (at least numerically). The following example
illustrates both the equilibrium and the revenue calculation.

Example 6.1 There are N customers with valuations uniformly distributed on [0,1],
so           on this interval. Under the second-price auction, it is a dominant-strategy
equilibrium for each customer to adopt the strategy

The expected revenue earned by the firm is just        —the value of the second
highest bid. It is not hard to show for the uniform distribution that

Thus, the firm’s average revenue increases with the number of bidders N.

6.2.2.2 Equilibrium Strategies for a First-Price Auction
Consider next a first-price auction, in which the highest bidder wins

the item and pays his bid. We consider only symmetric bidding strate-
gies in this case. That is, we assume each customer uses the same
bidding strategy and therefore bids an amount This is
a reasonable assumption given that customer valuations are symmetric
(have valuations independently drawn from the same distribution
We also assume that a customer’s bid is increasing in his valuation (cus-
tomers with higher valuations bid more), so the bid strategy is
increasing in This assumption is verified afterward. As before, an
equilibrium strategy is denoted

Again, we are looking for an equilibrium bid function such that if
all customers are using the strategy then no customer is able
to improve his expected surplus by bidding anything other than
We then use the first-order conditions for this equilibrium to derive a
differential equation for the bid function

To begin, note that a customer with valuation will win the item
if he is the highest bidder; that is, if for all So
customer probability of winning is4

4Equation (6.1) contains a minor abuse of notation: the P(·) on the left-hand side represents a
function of the bids (albeit a probability), while the right-hand side P(·) stands, as throughout
the book, for probability of an event.
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where the second inequality follows from the assumption that strategy
is strictly increasing in Since the argument is generic to any

customer we henceforth drop the subscript and consider an arbitrary
customer with valuation

Now suppose our customer could improve his expected surplus by
adopting the strategy of a customer with valuation different from
Specifically, the customer would bid and thus win with probability

but would still value the item at In this case, his expected
surplus would be

If the strategy is truly an equilibrium, this surplus should be max-
imized at (otherwise, would not be the customer’s optimal
bid). Therefore, applying the first-order optimality conditions, we can
differentiate (6.2) with respect to set the result to zero at and
obtain the following differential equation for

The solution to this differential equation is somewhat tedious to derive,
but one can verify that it is5

where is the probability of winning given by (6.1).6

Note that the equilibrium strategy (6.4) is continuous and increasing
in  and increasing in N (higher-valuation customers bid more; and the
more customers there are, the higher a given customer bids). One can
also show that it is the unique symmetric equilibrium for this problem
(Riley and Samuelson [441]).

Note from (6.4) that so customers in a first-price auction
will bid strictly less than their valuation. Hence, unlike in the second-
price auction, they shade their true valuations when bidding. This is to
be expected because customers are required to pay what they bid, so
they must shade their bids to make a positive surplus from winning.

5To check this, just use the fact that and substitute (6.4)
into the right-hand side of (6.3).
6A boundary condition of is required as well; see Appendix 6.A.
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Finally, the revenue to the firm is the expected value of the highest
bidder’s bid because the winner pays his valuation. So the firm’s ex-
pected revenue is Again, the mean of this order statistic is
not difficult to compute numerically or by simulation.

To illustrate, consider again the example of uniformly distributed val-
uations:

Example 6.2 There are N customers with valuations uniformly distributed on [0,1],
so              on this interval. In this case,                   and the equilibrium bidding
strategy is

So each customer bids a fraction            of his valuation; hence, customers with higher
valuations bid more, and the more customers N, the closer each bids to his actual
valuation.

Since the highest bidder wins, the expected revenue to the firm is then
It is not hard to show for the uniform distribution that

Therefore, the firm’s expected revenue is

Note that the expected revenue for the firm is the same in this example
and in Example 6.2 for the second-price auction. In other words, the firm
generates the same expected revenue regardless of which auction it runs.
As we show below, this is not a coincidence; rather, it is a consequence
of general conditions that guarantee that these two auctions are always
revenue equivalent under the private-value model.

6.2.2.3 Strategic Equivalence of Open and Sealed-Bid
Auctions

In the private-value model, the open descending (Dutch) auction is
strategically equivalent to the sealed-bid, first-price auction in the sense
that the equilibrium strategies for the two mechanisms are the same.
That is, if is a symmetric equilibrium in a sealed-bid, first-price
auction, then it is also a symmetric equilibrium in a open descending
auction, and vice versa. This is true because in an open descending
auction, each customer (knowing his valuation calculates his expected
surplus at each price given that there are no other customers willing
to buy at He then determines the value at which this surplus is
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maximized and bids when the price drops to But this is exactly
the same calculation the customer must make when submitting a bid in
a sealed-bid, first-price auction. Hence, the equilibrium strategies are
the same.

Likewise, an open ascending auction can be shown to be strategi-
cally equivalent to a sealed-bid, second-price (Vickrey) auction under
the independent private-value model. In an open ascending auction, it
is always optimal for a customer to stay in the bidding as long as the an-
nounced price is below his valuation —and to drop out once the price
exceeds But this is equivalent to the strategy of bidding
in a second-price auction, since in both cases if the customer wins, he
ends up paying the valuation of the second-highest customer. And as
we showed in Section 6.2.2.1, is a dominant-strategy equilib-
rium in the Vickrey auction. Hence, the two auctions are strategically
equivalent.

Because of this equivalence, we henceforth refer to these two cases
as simply the first-price and second-price auctions—without specifying
whether the mechanism is the open- or sealed-bid version.

6.2.3 Formal Game-Theoretic Analysis
We now formalize and generalize the analysis of bidding equilibria

for a general auction mechanism. Formally, a bidding strategy for cus-
tomer  is a function that specifies the bid that customer will
submit conditional on his valuation We let de-
note the vector of valuations and denote
the vector of bidding strategies used by the N customers. We let

that is, the vector v without the compo-
nent. Similarly, let

denote the bid strategies for all customers other than
An auction mechanism is specified by a pair of mappings

that defines the allocations of the goods and
that defines payments made by the customers (equivalently, revenue re-
ceived by the firm) as a function of their bids. The firm chooses the
auction mechanism before the auction is conducted and announces it to
all customers, so the mechanism too is common knowledge.

Suppose customer chooses a strategy Then
is the allocation of goods to customer which is equal to 1 if he is
awarded a unit, and 0 otherwise. Given his bid        the probability
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that customer is awarded a unit is given by

Similarly, is the payment made by customer given
the bid vector b(v), and his expected payment is

Note the expected payment is the expected revenue received by the firm.
When the number of players N is random, each player computes his op-
timal action by conditioning both on the valuations of the other players
and the total number of players in the game.

Customers are assumed to be rational and attempt to maximize their
expected net utility (the value of the item less the price paid to the
firm). Therefore, customer chooses his strategy to maximize his
expected surplus

For example, in the case of the single-unit, first-price auction, the item
is awarded to the highest bidder who pays the auctioneer the value
of his bid; all other bidders pay nothing. Then if is the
highest bidder and wins the item), then and

and if is not the winning bidder),
and So the expected

net utility is simply
We assume that customers choose their strategies without collusion.

In this case, they play a noncooperative game of incomplete information.
An appropriate solution concept in this context is that of the Bayesian
equilibrium of Harsanyi [241], an extension of the ordinary Nash equi-
librium [402]. Specifically, a vector of strategies is an
equilibrium strategy if, for all customer best response is to maintain
his strategy provided all other customers maintain their strategies

Formally,

In other words, no customer has an incentive to change his strategy if all
other customers maintain their strategies. We further restrict ourselves
and consider only symmetric equilibria; that is, strategies for which the
equilibrium strategy is the same for all As mentioned, this
assumption is reasonable given that customer valuations are assumed
symmetric; however, it is a restriction nevertheless, and one cannot rule
out the fact that asymmetric bidding strategies may exist. Henceforth,
we let denote such a symmetric equilibrium strategy.
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6.2.3.1 Direct-Revelation Mechanisms
The analysis of equilibrium bidding strategies is greatly simplified by

considering what are called direct-revelation mechanisms. Essentially,
a direct-revelation mechanism is one in which a customer’s equilibrium
strategy is to bid his true valuation For any mechanism that has
an equilibrium it turns out, we can always find an equivalent direct-
revelation mechanism.

To see this, note that if is a symmetric equilibrium for some
given auction mechanism, then the firm can always define an alterna-
tive mechanism (the direct-revelation mechanism) in which customers
submit bids, the firm inserts these bids into the function and the
resulting values are treated as bids under the rules of the original auction
mechanism. The situation is illustrated in Figure 6.2. Since is an
equilibrium strategy, it follows that under the direct-revelation mecha-
nism it is an optimal strategy for every customer to bid his valuation

since otherwise it would contradict the fact that is an equi-
librium strategy. Conversely, if there does not exist a direct-revelation
mechanism defined by some in which bidding is an equilibrium,
then there cannot be any equilibrium bidding strategy under the original
mechanism, otherwise the corresponding equilibrium would define
such a direct-revelation mechanism.

In this way, we can reduce the equilibrium analysis of any mecha-
nism to an analysis of the corresponding direct-revelation mechanism,
in which case we can view the allocation and payments as being di-
rectly a function of the customers’ valuations—denoted and

respectively (because the optimal strategy is for customers
to bid their valuations). This approach is illustrated in Figure 6.2.

Let denote customer expected payment
under a direct-revelation mechanism. The equilib-

rium can be analyzed by noting that the expected surplus in the direct-
revelation mechanism, defined by

must satisfy

for all customers In other words, for each customer revealing his
true valuation is no worse than pretending to have another valuation

This condition is called the incentive compatibility constraint because
it requires that it be in customer self-interest to truthfully reveal his
valuation.
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6.2.4 Revenue Equivalence
How much revenue is generated for the firm by a given auction mech-

anism? At first, answering this question would appear to be a hopeless
task because each auction mechanism leads to different equilibrium bid-
ding strategies and equilibrium payments. Finding and evaluating these
various equilibria for a reasonable range of mechanisms (or ideally all
possible mechanisms) is a daunting task. However, it turns out that the
expected revenue generated by a private-value auction can be reduced to
an analysis only of the resulting allocations without explic-
itly solving for the equilibrium bidding strategies. The only conditions
required are that the functions are increasing in (so that
higher valuations lead to a higher probability of allocation)7 and cus-
tomers with valuation zero have zero expected surplus in equilibrium.8

Specifically, we have:

7Verifying that the allocations are increasing in the valuations   may require analyzing
monotonicity properties of the equilibrium strategy—that higher-valuation customers    bid
higher in equilibrium.
8The requirement that customers with valuations zero have zero expected surplus is called a
participation constraint; intuitively, it means we cannot force a customer to participate in an
auction in which his expected surplus is negative.
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THEOREM 6.1 [Revenue Equivalence Theorem] Consider the private-
value model, in which there are C items and N customers with i.i.d.
valuation independently drawn from continuously differentiable, strictly
increasing distribution F on Consider any mechanism in which
(i) the allocation to customer is increasing in for all
and (ii) customers with valuations of zero have zero expected surplus.
Then the expected revenue for the firm is given by

where

A proof of the this theorem is given in Appendix 6.A. Moreover, this
revenue equivalence holds for the customers as well; a customer’s ex-
pected payment is the same under all mechanisms satisfying the above
conditions. However, the equivalence in both cases is only in expecta-
tion; the payments on a sample-path basis may be quite different under
different mechanisms.

Note is precisely the marginal revenue function (7.14) encoun-
tered in our analysis of revenue-maximizing prices in Chapter 7. This
is not a coincidence; Bulow and Roberts [95] show the revenue function
(6.6) can in fact be interpreted as a variant of third-degree monopoly
price discrimination among the N customers (see Section 8.3.3.2).

In auction theory, is sometimes referred to as customer virtual
value because (6.6) implies that the firm can hope to collect only

from customer (in expectation) and not his entire valuation The
difference            is referred to as the information rent of customer

because it is the surplus that customer retains due to his private
information about his own valuation

As a result of Theorem 6.1, note that any two mechanisms that pro-
duce the same allocation for every realization of (the same
customers are awarded units under each mechanism) produce the same
expected revenue for the firm. This is true despite the fact that the
bidding strategies and payments may be very different under each mech-
anism. For this reason, Theorem 6.1 is referred to as the revenue equiv-
alence theorem.

To illustrate, consider a standard first-price auction on a single unit.
We saw in Section 6.2.2.2 that the equilibrium bidding strategy was
strictly increasing in the value and that the item is awarded to the
highest bidder. In a second-price auction, the customer with the highest
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valuation also wins that auction. Thus, by Theorem 6.1, the expected
revenue to the firm must be the same in each case. We illustrate this
result with a continuation of our previous example:

Example 6.3 Suppose there are N = 2 customers with valuations uniformly distrib-
uted on [0,1]. Let and From Example 6.2
we know that in a first-price auction, the customers will bid in
equilibrium. The highest bidder will win, and the firm’s expected revenue is

Now consider a second-price auction of Example 6.1. The highest bidder wins but
pays the price of the second-highest bid, and each customer bids his valuation in
equilibrium. The firm’s expected revenue is

Hence, the two expected revenues are equal. Moreover, note that since
and therefore since in both auctions if and only if

we have

as well. Finally, for N > 2 customers, the customer with valuation wins, and
the same analysis shows that

which is precisely the expected revenue found in Examples 6.1 and 6.2.

Similarly, in a standard C-unit auction, one can show that both the
first-price and second-price auctions award the goods to the customers
with the C highest valuations. Thus, the allocation is the same
for each and hence the two mechanisms generate the same expected
revenue for the firm.

6.2.5 Optimal Auction Design
The revenue expression (6.6) can be used to design an optimal mech-

anism by simply choosing the allocation rule y*(v) that maximizes
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subject to any constraints one might have on the allocation.
Toward this end, it is useful to make the same regularity Assump-

tion 7.2 on the distribution function F that we impose in dynamic pric-
ing problems: namely, that is strictly increasing in Note that

where is the hazard rate of the distribution F. The marginal revenue
satisfies this monotone condition as long as the hazard rate is

increasing—or not decreasing too quickly with 9

To illustrate, consider designing an optimal C-unit auction using (6.6).
Note that with C units to allocate and given a realization of v, we want
to maximize (6.7) subject to the constraint that

and for all It is easy to see what the optimal allocation
is by inspection. Indeed, define

(and by convention, if Then since J ( . ) is assumed
to be increasing, it follows that it is never optimal to allocate a unit
to a customer with valuation because awarding units to such
customers results in a negative contribution to the sum (6.7). Among
the remaining customers with we want to award units to those
with the highest valuations Thus, the optimal allocation is to award
units to the C highest-valuation customers above and if there
are less than C customers with to award units only to those
customers and discard the remaining units.

How can we achieve such an allocation? One possibility is to introduce
a reserve price into the standard first- or second-price C-unit auction
mechanism. A reserve price is a lower bound on bids that the firm
sets before the auction; only bids above the announced reserve price are
considered.

To illustrate, consider a first-price auction; it is easy to see that if
we set a reserve price of customers with valuations will not
submit bids. One can show that the remaining customers with valuations

9More precisely, it is satisfied when                              for all              One can show that this
condition is satisfied by many standard distributions, including the uniform, normal, logistic,
exponential, and extreme value (double exponential) distributions [25].
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will submit bids according to an increasing equilibrium strategy
similar to (6.4). Indeed, the resulting symmetric equilibrium strategy is
now

The C units are awarded to the C highest bids above the reserve price,
and the resulting allocation is exactly the same as the optimal allocation.
Hence, the first-price mechanism with reserve price is optimal. A
similar argument holds for the second-price auction, in which case one
can show that it is optimal to post a reserve price of where winners
pay the minimum of the highest bid above or if there
are fewer than C + 1 bids above We therefore have the following
theorem:

THEOREM 6.2 Under the private-value model, the standard C-unit first-
price and second-price auctions with reserve price (given by (6.8)) are
optimal for the firm.

Hence, with a properly chosen reserve price, the standard first-price and
second-price auctions are revenue maximizing among all possible pricing
mechanisms. This is a rather remarkable result; under the private-value
model assumptions, a firm simply cannot do better than to sell using
one of these two auction formats. Again, we illustrate this result by
returning to our uniform-distribution example:

Example 6.4 Suppose there are N customers with valuations uniformly distributed
on [0, 1]. Since implies the optimal reserve price
since this satisfies From (6.9), the customers with valuations over 1/2
therefore bid

which is strictly greater than the bid of                    submitted by these same customers
in the first-price auction without reserve prices. Also, since the item is allocated to the
highest-value customer and the distribution of the highest valuation is
the firm’s optimal expected revenue is

which is again larger than the expected revenue of (N – 1)/(N + 1) generated when no
reserve prices are used but approaches the no-reserve-price revenue when N is large.
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The fact that a reserve price primarily benefits the firm most when
there are few customers is intuitive. In essence, the reserve price serves to
create “extra competition” for customers—forcing them to bid higher in
a first-price auction or pay more if they win in a second-price auction—
than they otherwise would without a reserve price. However, with lots
of competition from other customers, the need for the firm to introduce
this extra incentive is less important, as the customers themselves create
sufficient competition.

6.2.6 Relationship to List Pricing
How is the optimal auction mechanism related to a traditional list-

price mechanism? There are several close connections worth examining.
First, note that a list-price mechanism qualifies as one of the possible

allocation and payment mechanisms studied above for the C-unit auc-
tion. In particular, using a fixed list price customers indicate their
willingness to pay (just as in an ascending auction). If there are C
or fewer customers willing to pay each receives a unit and pays the
fixed amount if there are more than C customers willing to pay
the C units are randomly rationed to these customers. This produces
an allocation and payment rule just as in the standard auction types. In
the list price case, it is easy to see that it is a dominant strategy for a
customer to “bid” (indicate his willingness to pay   ) if his valuation   is
more than Thus, a dominant, symmetric equilibrium strategy exists
in which all customers with valuations greater than attempt to buy.

Given this observation, it is easy to compute the firm’s expected rev-
enue. Let denote the number of customers with valuations greater
than Then the expected revenue to the firm as a function of is

Another way of deriving this revenue is to use the expression (6.6) for the
firm’s equilibrium revenue and to note that for the list-price mechanism

since units are allocated, and each customer to which
we allocate a unit has a valuation so is
the expected value of the corresponding term Using the fact that

it is then a simple exercise to show that
which gives us the same expression as (6.10).

A direct optimization of (6.10) does not lead to a clean expression,
but several special cases are simple and provide useful insight. We look
at these next.
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6.2.6.1 Capacity Is Unconstrained
The first case is where the number of customers so there are al-

ways fewer customers than there are units. In this case,
and the revenue for a list price of is

Differentiating and setting the result equal to zero, we
find that the optimal price satisfies

But since (F is strictly increasing), rearranging this is equiv-
alent to which is the condition for the revenue-maximizing
price and is also the condition for determining the optimal reserve price.
Thus, the optimal price when is the same as the optimal reserve
price—that is, Moreover, the revenue under this optimal price
can be written

where is the indicator function of the event But the
expression above is simply the optimal
auction revenue when is strictly increasing and Thus we
have

PROPOSITION 6.1 If capacity is not constrained in   C-unit, private-
value auction                then using a fixed list price      satisfying

is an optimal mechanism for the firm.

6.2.6.2 Large Capacity and Sales Volumes
Another case in which list pricing is provably good is when both the

number of customers and the number of units for sale is large. Specifi-
cally, let be a positive integer, and consider a problem with units
and customers for some N > C > 0. If we set a fixed price of
then the number of customers willing to purchase at this price is denoted

with mean Moreover, by the law of large numbers,
as

and the firm’s revenue satisfies
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Just as in the capacity-constrained pricing problem of Section 5.2.1.2,
the asymptotically optimal price is given by

where is the revenue-maximizing price, determined by and
is the run-out price, determined by equating the expected number of

customers willing to pay to the supply C, so When
the expected revenue is and when the expected

revenue is
Similarly, one can analyze the scaled optimal auction revenue. Note

that the scaled expected optimal auction revenue can be written

where denotes the largest valuations
First, consider the case Then as with

probability one So the above becomes

which is exactly the asymptotic fixed-price revenue given by (6.11) when

In the alternative case where as with
probability one and similar reasoning shows that the

which is again exactly the asymptotic fixed-price revenue given by (6.11)
when These arguments can be formalized to show

PROPOSITION 6.2 If the number of customers and the number of units
for sale in the private-value auction model are, respectively,     and
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for some integers and N > C > 0. Then as a list-
price mechanism is asymptotically optimal, in the sense that the ratio of
the optimal expected list price revenue to the optimal expected auction
revenue tends to one.

As a result, in high-sales-volume settings, using a fixed price will be
near optimal. This implies auction benefits are something of a “small-
numbers” phenomenon, which is consistent with the auctions one en-
counters in practice.

6.2.6.3 Dynamic Pricing
Another close connection between auctions and list-price mechanisms

is obtained by considering a dynamic pricing policy as a particular alloca-
tion and payment mechanism in a private-value auction model. Making
this connection yields several important insights.

For example, consider the problem of selling a single unit to a pop-
ulation of N strategic consumers. As in the price-skimming model of
Section 5.5.2, the private-value model considers the N customers to have
i.i.d. private valuations for the item. The Dutch-auction mechanism
calls for the firm to continuously reduce the price over time until a cus-
tomer decides to bid at the offered price. The customer then pays this
offered price. However, this is precisely what happens in a (continuous-
time) dynamic pricing policy as well, so a descending dynamic price can
effectively achieve the Dutch-auction outcome. By simply adding an op-
timal reserve price below which we will not lower the price, such a
dynamic pricing mechanism becomes optimal.

More generally, by the revenue equivalence theorem, any dynamic
pricing policy that results in the C highest-valuation customers, with
valuations in excess of receiving the units, will be revenue-maximizing
for the firm and thus produce the same expected revenue as the optimal
auction.

For example, Bulow and Klemperer [94] analyze the C-unit, private-
value model under a dynamic pricing mechanism. In their mechanism,
the firm uses a list price that is lowered continuously until one or more
customers offers to buy at the current price. If the number of customers
willing to buy at the current price is less than the remaining supply, these
customers are awarded the items at this price, and the firm continues to
lower the price. If the number of customers willing to pay the current
price exceeds the remaining supply, the firm does not sell the items;
it instead increases the price discontinuously and then tries again to
lower the price. Since a customer’s probability of getting an item is
higher when he attempts to buy early (if he attempts to buy and fails,
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he can always try again later, so his probability of obtaining the item
cannot decrease by attempting to buy early), it is not hard to show that
customers with the highest valuations are the ones that attempt to buy
first. Therefore, the firm allocates the items first to the customers with
the highest valuation. As a result, Bulow and Klemperer [94] argue that
by revenue equivalence, if the firm does not lower the price below
this dynamic pricing mechanism is optimal. Similar arguments hold for
many other dynamic pricing policies as well.

This shows there is a rather close connection between optimal auc-
tion theory and dynamic pricing theory with strategic consumers. In-
deed, using the revenue equivalence theorem, the seemingly difficult task
of analyzing the customer equilibrium produced by a dynamic pricing
strategy is greatly simplified, and it shows in fact that a range of pricing
mechanisms are optimal.

6.2.7 Departures from the Independent
Private-Value Model

Many of our conclusions thus far depend to a greater or lesser extent
on the assumptions of the independent, private-value model. What hap-
pens when these assumptions are relaxed? In this section, we look briefly
at a few cases that are especially relevant for RM. Each has implications
for the types of auctions that are optimal for the firm.

6.2.7.1 The Common-Value Model
The private-value model assumes that each customer’s valuation is

independent of the valuations of other customers. Thus, if a customer
learns the value that another customer places on the item, it has no
impact on his valuation. Such an assumption is reasonable if the item
is going to be used for personal enjoyment or consumption. However,
in other cases the item may have a common commercial value, may be
resold at some future point in time, or may be of uncertain quality, so
the valuations others have on the item could reveal useful information
about the value of the item to a given customer.

A canonical example of such a setting is selling an offshore oil lease.
The value of the lease to a customer is dependent on two key factors: the
volume of oil it contains and the cost of extracting that oil. Typically,
there is a high degree of uncertainty about both these factors. Because of
differences in survey data or technological expertise, different customers
may have independent information on the value of a given lease, and so
on. As a result, knowing how another customer values the lease may
change your assessment of its profitability.
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A simple model of such a setting is the following: consider auctioning
a single item that has a common value which is the same for all
customers. However, the value is uncertain. All customers have the
same prior knowledge of embodied as a distribution over values of
This distribution is common knowledge. A value of is drawn from this
distribution, and then each customer receives a (noisy) signal of the
form

where are i.i.d. random-noise terms with mean zero. The
distribution of      is also common knowledge.

Note that given only the signal customer expected value for the
item is

with variance given by the variance of However, if one were to aggre-
gate the customers’ signals by averaging them, the estimate would be

which provides a much better (lower variance) information
on the value than do the signals alone.10 More generally, customer

estimate of may be altered by information he receives about the
signals of other customers. This sort of behavior significantly affects the
auction outcomes.

For example, one phenomenon that arises in this setting is the so-
called winner’s curse. To illustrate the idea, consider a sealed-bid,
second-price auction. Suppose customer were to bid his expected
valuation for the item, as in the private-value case. The customer
might (incorrectly) reason that bidding his own expected valuation is
a dominant strategy because bidding more than increases his chance
of winning only in cases where his expected surplus is negative, and bid-
ding less than decreases his chances of winning only in cases where his
expected surplus is positive. The reasoning is false, however, because
customer expected valuation conditional on winning the auction is
less than his unconditional expected valuation Indeed,

since (provided that has nonzero
probability of exceeding its mean zero).

Intuitively, winning should indicate to customer that his noise term
is the largest and therefore his initial estimate is upwardly biased.

Therefore, if he were to bid his unconditional estimate winning the

10For example, the variance of the aggregate signal                      is a factor              smaller than
the variance of
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auction would indeed be bad news. It would indicate his expected sur-
plus was negative; hence the winner’s curse. To overcome this “curse,”
a rational customer must adjust his bid downward, considering the fact
that it is the expected valuation of the item conditioned on having the
highest signal that matters in determining his winnings.

The tendency of customers to reduce their bids to avoid the winner’s
curse changes the revenue equivalence of the basic auction types. In
particular, while the sealed-bid auction conveys no information to cus-
tomers, the Dutch (open descending price) and English (open ascending
price) auctions provides them some information because they can ob-
serve how many customers are still willing—or not willing—to buy at
the current price, when each drops out, and so on. The information
about other customers’ valuations tends to reduce the negative impact
of the winner’s curse.

For example, when an item has a common-value component, one can
show the firm is better off using an English (open ascending price) auc-
tion than a sealed-bid, second-price auction—auctions that are strategi-
cally equivalent under the private-value model. Moreover, one can show
that if the firm has its own signal (some private information) positively
correlated with the item’s value (like past price data of similar items
or an appraisal), it benefits by sharing that information with the cus-
tomers. This is because customers will tend to increase their estimate of
the item’s value as a result and bid more aggressively. Reserve prices also
benefit the firm, but unlike in the private-value case, the optimal reserve
price may vary with the type of auction and the number of customers.

6.2.7.2 Risk Aversion
Another factor affecting the results of the independent, private-value

model is the assumption that both the firm and customer are risk-
neutral. (See Appendix E for a discussion of risk preferences.) While the
assumption of risk neutrality for a firm is often reasonable (for example,
when the firm is a large, participating in many auctions over time), the
assumption of risk neutrality for individual consumers is typically less
realistic. However, it is easy to determine the relative performance of
the standard auction types under risk aversion.

First, consider the case where the firm is risk-neutral and the cus-
tomers are risk-averse. By revenue equivalence, note that a customer

expected payment conditioned on his valuation being the high-
est is the same under the first- and second-price auctions, since this
expected payment is simply the expected revenue to the firm. How-
ever, the customer who wins a first-price auction pays a certain amount

while the same customer in a second-price auction will pay an
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uncertain amount with the same mean—namely, the valuation of the
second-highest customer conditioned on the fact that is the highest
valuation. Thus, a risk-averse customer will prefer the first-price auc-
tion to the second-price auction. Given this preference, in the first-price
auction risk-averse customers will tend to increase their bids above the
risk-neutral equilibrium bid (Bidding one’s own valuation is still
a dominant strategy under risk aversion in the second-price auction, so
the bidding strategy in this case is not affected.) The higher resulting
equilibrium bids in the first-price auction mean that the firm’s expected
revenue is higher as well, so the firm prefers this auction format.

Now consider the opposite case, where the firm is risk-averse and the
customers are risk-neutral. By the same reasoning as above, the firm’s
revenue in the first-price auction conditioned on the winning value being

is certain while in the second-price auction it is uncertain. Therefore,
unconditioning on the revenue in the second-price auction is more
variable as well—also with the same mean as in the first-price auction.
Thus, a risk-averse firm will also prefer the first-price auction.

The fact that the firm prefers the first-price auction in both cases (and
is no worse in the second-price auction if all parties are risk-neutral) has
been offered as one explanation for the relative popularity of first-price
auctions over second-price auctions in practice.

6.2.7.3 Asymmetry Among Customers
Yet another departure from the private-value model is to relax the

assumption of symmetry. The simplest case is to assume that there
are two types of customers, types 1 and 2, with different valuations for
the item drawn from different distributions, denoted and
with corresponding marginal revenue (virtual value) functions and

For example, type 1 customers may be experienced customers,
and type 2 customers may be novice customers, or type 1 customers may
be individuals while type 2 are industrial customers.

To see what can happen in this case, assume the first      customers
are of type 1 and the next are of type 2, and assume the marginal
revenue functions are both increasing. The optimal allocation for the
firm is obtained by maximizing
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subject to the constraint that the total allocation is one

As before, it is optimal to allocate the item to the customer with the
highest marginal value. However, note since        and        may differ,
the customer with the highest marginal value is not necessarily the one
with the highest valuation

This has important consequences for the optimal auction. For exam-
ple, it means that it can be optimal for the firm to set different reserve
prices for different types of customers, and the firm may systematically
favor one class of customers over another in awarding the item. Indeed,
one can show that in certain cases, it is optimal for the firm to favor
the type of customers that tend to value the item less. The rationale for
this is that by favoring these low-value types, the firm encourages the
high-value types to bid even higher. The resulting higher equilibrium
bids it receives from the high-value types more than compensates the
firm for the loss he occasionally takes in favoring the low-value types.

In other words, it is optimal for the firm to discriminate among cus-
tomers in the offering terms for the auction. This behavior is similar to
the classical third-degree price-discrimination policy of offering different
prices to different customer groups based on their different willingness
to pay. (See Section 8.3.3.1.)

6.2.7.4 Collusion
The private-value model assumes the firm defines a game among the

customers, intended to extract the highest prices possible from them. A
key assumption in this game is that customers do not cooperate. Yet in
practice, there is the possibility of collusion among customers, in which
a coalition of customers (popularly called a bidding ring) cooperates and
agrees to submit bids that are designed to reduce the price paid by the
winner. Such collusion has been reported, for example, in the awarding
of some government contracts.

There are several practical devices to reduce the likelihood of col-
lusion among customers, most of which involve reducing the ability of
customers to communicate among themselves. For example, one tech-
nique is to keep the identity of all customers secret, so customers cannot
identify each other and form a bidding ring. (Though this may fail
if the number of potential customers is so small that most customers
know, a priori, the pool of likely participants—such as major suppliers
in a procurement auction). Another technique is to reduce the amount
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of information relayed about bids to the minimum necessary to conduct
the auction. For example, the firm might report only the highest current
bid in an ascending auction, not the number of bids received, the time
bids were received, or the history of bid values. This prevents customers
from using such data to “signal” their intentions to each other.11

Because collusion can take so many forms, it is difficult to make
general recommendations on the firm’s “optimal response” to collusion.
Nevertheless, to give some sense of the effect that it has consider a case
where all N customers in the private-value model can collude perfectly.
That is, they can get together and agree to submit bids, make payments,
and allocate the item among themselves to maximize the surplus they
receive as a group. In this case, the group of N customers effectively
acts as a single “big customer” with valuation
with distribution

where F(·) is the distribution of the valuations for the N customers with
density The marginal value for this distribution is

Of course, when faced with a single customer, the optimal auction is still
the usual one: conduct a first or second-price auction with a reserve price
set according to the marginal value of the single customer. So assuming

is increasing, the firm should set a reserve price satisfying

In this case, the bidding ring will be forced (yet willing) to pay when
its maximum valuation, is at least this large. Also, one can show that
this optimal reserve price is higher than the noncooperative optimal
reserve price and that it increases with the number of customers N in
the coalition. Thus, the possibility of collusion creates an incentive to
use higher reserve prices than when customers do not collude. Indeed,
the desire to thwart collusion is one of the main motivations for using
reserve prices in practice.

11For example, at a keynote address to the Institute for Mathematics and its Applications
(IMA) in December 2000, Robert Weber reported an instance in which bidders in a auction
used the least significant digits in their bid amounts as a signaling mechanism. To overcome
this, the auctioneer imposed larger minimum bid increments, thus reducing—or at least
raising the cost of—this sort of signaling.
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6.3 Optimal Dynamic Single-Resource Capacity
Auctions

We next consider a dynamic auction problem that is in essence the
auction equivalent of the single-resource problem of Chapter 2. In con-
trast to the traditional auction problem, in this case the firm receives
bids from T groups of customers who are separated over time. In par-
ticular, in each period we assume that a new set of customers arrives
and bids for the remaining capacity. The firm must determine winners
in period before observing the bids (or even the number of customers)
in future periods. This dynamic feature parallels the traditional RM
model, in which the firm must determine the capacity to sell in a given
period before observing demand in future periods.

Such separation of customers over time is common in RM practice, a
canonical example being the airline industry. Leisure travelers typically
make travel plans months in advance of departure because they fre-
quently must coordinate their vacation travel with other arrangements,
like reserving resort accommodations, taking time off work or finding
child care, and so on. In contrast, business travelers may not even know
of their need to travel until a few days in advance of departure. As a
result, if an airline were to conduct a single auction months in advance
of departure, they would likely lose many business travelers; if they con-
ducted a single auction a week before departure, they would likely lose
many leisure travelers. This creates an incentive for them to conduct
auctions at multiple points in time.

Other industries face similar situations, in which customers’ needs are
realized at different points of time (the need to buy a gift for a birthday,
for example)—or are based on other contingent events (a new order
to a manufacturer triggering a need for new supplies) that effectively
separate customers in time. In such situations, a firm attempting to use
a single auction at a single point in time would find itself eliminating
many potential customers. By conducting multiple auctions over time,
it can reach a larger pool of customers.

We next look at the optimal auction-design problem for this dynamic
auction setting. We also compare the optimal auction to a traditional
RM mechanism based on using dynamic list prices and capacity controls.

6.3.1 Formulation
A firm has an initial capacity of C units of a good that it wants to

sell over a finite time horizon T. It does this by conducting a sequence
of auctions indexed by
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Customers are separated in time. In period risk-neutral potential
customers arrive. is a nonnegative, discrete-valued random variable
distributed according to a known p.m.f. with support {0,..., M}
for some M > 0 and strictly positive first moment.

The assumptions parallel the private-value model: Each customer
wishes to purchase at most one unit and has a reservation value

When the context is clear, we omit the time index and
write Reservation values are private information, i.i.d. samples from
a distribution F(·), which, as in the private-value model, is assumed
strictly increasing with a continuous density function on the sup-
port with and To simplify notation and
subsequent analysis, we assume that the distribution functions and
F do not depend on the time but the extension to time-dependent
distributions is straightforward.

The distributions F and    are assumed common knowledge to the firm
and all potential customers (although this assumption can be relaxed for
the second-price mechanism below). In addition, customer knows his
own (private) valuation Without loss of generality we assume that
the unit salvage value for the firm at time is

The firm's problem is to design an auction mechanism that maximizes
its expected revenue. To do so, it must solve for an optimal allocation

in each period, given the values of in each period and knowing
only the probabilistic information (distributions) of these values in future
periods.

Define the value function as the maximum expected revenue
obtainable from periods given that there are units in
period Using (6.6) for the expected revenue in each period, the Bell-
man equation for in terms of the allocation variables can be
written

where is the total number of units awarded in period The boundary
conditions are

where C denotes the initial capacity. An allocation that achieves the
maximum above given and will be an optimal dynamic allocation
policy. (See Appendix D.)
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6.3.2 Optimal Dynamic Allocations and
Mechanisms

We first analyze the theoretical properties of the dynamic program
(6.12)–(6.13). From this structure, one can show that variants of the
classic first- and second-price auctions are optimal for this problem.

6.3.2.1 Optimal Allocations
As in the traditional single-resource RM model, the solution of the

dynamic program (6.12)–(6.13) hinges on the monotonicity of the mar-
ginal values Indeed, one can show the
following [542]:

PROPOSITION 6.3             is decreasing in   for any fixed   and is de-
creasing in     for any fixed

These are quite natural economic properties. At any point in time,
the marginal benefit of each additional unit declines because the future
number of customers is limited; therefore, the chance of selling the mar-
ginal unit—and the expected revenue if we sell it—decreases. Similarly,
for any given remaining quantity the marginal benefit of an addi-
tional unit decreases with because as time progresses, the number of
future customers declines; therefore, the chance of selling the marginal
unit—and the expected revenue if we sell it—goes down.

Proposition 6.3 simplifies the optimal allocation. To see this, note
that since J(·) is assumed to be increasing, if the firm decides to award

units, it is optimal to allocate them to the highest (that is, to
the highest Therefore, define

and note that

Also, define Then the formulation (6.12) can
be rewritten in terms of as follows:

where the sum is defined to be 0 if Let be the optimal solution
above (the optimal number of bids to accept) at time in state
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Let denote a realization of the random variable and be a
realization of customers’ types. The following proposition characterizes
the optimal allocation and follows from (6.15) and Proposition 6.3:

PROPOSITION 6.4 For any realization        the optimal number of
units to allocate in state is given by

if and by otherwise. Moreover, it is optimal to
award these units to those customers with the highest valuations

This shows how the firm should run the auction—provided it can in-
fer the valuations of the customers. In particular, note that

for so the decision rule in Proposition 6.4
about the optimal number of bids to accept is simply based on sorting
the values and progressively awarding items to the highest-value cus-
tomers until drops below the marginal opportunity cost

The situation is illustrated in Figure 6.3. Thus, given the customer
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valuations and the value function the optimal allocation rule
is simple.

6.3.2.2 Optimal Mechanisms
We next demonstrate that appropriately modified versions of two

standard procedures—the first- and the second-price auctions—achieve
the optimal dynamic allocation.
Second-price auction In a straightforward application of the second-
price mechanism in the dynamic auction setting, it is no longer optimal
for customers to bid their valuation. The following informal reasoning
shows why. Suppose it is optimal to bid truthfully under the second-price
mechanism and let

The thresholds are directly computable from the solution of (6.23) de-
scribed in the previous section, which uses common knowledge informa-
tion, and are in principle known to all customers and the firm. Following
Theorem 6.4, the firm will accept bid as long as Now sup-
pose the firm decides to award units. That means
and However, if the first loser, had bid

instead (which in fact verifies the firm would
include him among the winners and award units, and the customer
would pay only and make a positive profit. Hence, customers have
some incentive to bid above their own valuations (a pure second-price
mechanism fails to elicit truthful bids).

However, the following modification to the second-price mechanism
avoids this pitfall. In each period the firm first computes the thresholds

using the current capacity Given the vector of submitted bids b,
the firm will award units, where

and if and all winners will pay

where is the highest bid and is the threshold to award
the unit. Ties between bids are broken by randomization. For sim-
plicity we refer to (6.17)-(6.18) as the modified second-price mechanism.
One can then show the following result [542]:

PROPOSITION 6.5 For the modified second-price auction with allocation
and payments given by (6.17)-(6.18), customer’s dominant strategy
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is to bid his own valuation. Moreover, under this dominant-strategy
equilibrium, the modified second-price mechanism is optimal.

First-Price auction In a first-price auction, items are awarded to the
highest bidders, and winners pay their bids. This type of mechanism
may be more natural in many applications.

To establish that the first-price auction achieves the same expected
revenue as the second-price mechanism described above, one needs to
show that (1) items are again awarded according to the optimal allo-
cation rule derived in the previous section and (2) customers with zero
value have zero expected surplus. To do this, it suffices to show that
there exists a symmetric equilibrium bidding strategy that is strictly
increasing in the customer’s valuation. In this case, the firm can use this
bid function to invert a bid and infer the customer’s valuation, which it
can then use to correctly compute the number of items to award.

The main result for this case is the following [542]:

PROPOSITION 6.6 Under the first-price auction, there exists a symmet-
ric, strictly increasing, bidding strategy equilibrium The strategy

depends on the current values of and as given by

where is the probability that a customer with valuation is among
the winners,

and by convention
Moreover, under this symmetric equilibrium, the first-price auction is
optimal.

Note that (6.19) shows—since winners are required to pay what they
bid—that under a first-price mechanism customers shade their valua-
tions to make some positive surplus. Since is strictly increasing,
the units are sold to the players with the highest valuations. Moreover,
once the firm observes bids it can calculate the valuations

through the well-defined inverse bidding function
An important practical observation from this result is that the opti-

mal first-price mechanism is not greedy, in the sense that it does not
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maximize the sum of observable revenue in the current period plus the
expected revenue to go, because the firm compares the values of
with the marginal value rather than with the bids themselves.
As a result, the firm may (1) accept bids below the marginal value when

and (2) reject bids that are above
marginal value when Numerical
experiments show that both cases may occur.

This behavior is somewhat counterintuitive because at first blush is
seems that any bid that exceeds the marginal value of capacity ought
to be worth accepting. However, such reasoning neglects the effect that
the acceptance policy has on the bidding strategy of the customers. If
the firm accepts all bids that are ex post profitable, then customers end
up bidding less in equilibrium than they do when the firm follows the
optimal acceptance strategy. The net result is to lower the firm's total
revenue. In short, the firm has to occasionally refuse profitable bids to
induce the customers to bid more aggressively—and in equilibrium it
benefits by taking these short-run losses. This is simply an extension of
the rationale for using reserve prices in a standard auction.

6.3.3 Comparisons with Traditional RM
We next compare the optimal auction mechanisms with a variation of

a traditional quantity-based RM mechanism as in Chapter 2. The firm
sets a list price at the beginning of each period and calculates a threshold
on the number of units it is willing to award at the list price. Both the
price and the capacity limit are optimized. We call this mechanism
the dynamic list price, capacity-controlled mechanism (DLPCC). Note
that unlike in a traditional RM mechanism, in DLPCC prices are set
optimally rather than being given exogenously.

Customers who are interested in acquiring one unit at that list price
submit acceptances (an offer to buy). If the number of acceptances ex-
ceeds the capacity limit set by the firm, the units are randomly rationed
to the customers. It is easy to see in this case that a dominant strategy
for customers is to submit an acceptance if and only if their valuations
exceed the firm’s reserve price.

6.3.3.1 Theoretical Comparisons
One can show that the DLPCC mechanism is, in fact, optimal in

several cases. Indeed, we have [542]

PROPOSITION 6.7  The DLPCC is optimal if the following cases:
(i)  There is at most one customer per period
(ii) There are more units to sell than there are potential customers
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(iii) Asymptotically as the number of customers and units to sell grows
large

That is, unless customers can be aggregated in time, the number of
customers and objects is not too large, and there is some scarcity, there
is no advantage to using a bidding mechanism over simple list pricing.
These results are analogous to those in Section 6.2.6 for the single-period
auction.

6.3.3.2 Numerical Comparisons
We next consider some numerical examples that illustrate the con-

ditions under which an optimal pricing mechanism significantly out-
performs DLPCC. In the examples that follow, the dynamic program
associated with the optimal mechanism is solved using simulation, and
customers’ valuations are assumed to be uniformly distributed.

The first experiment shows how the revenue changes as the concen-
tration of customers, defined as the number of customers per period,
is varied. The firm starts with C = 16 units, and the total number of
customers in all periods is constant at 64. The number of periods varies
from 1 to 64, so that the number of customers per period varies. That is,
the example runs from 64 customers in one period (high concentration
of customers) to one customer in each of 64 consecutive periods (low
concentration of customers).

The results are given in Table 6.1. Observe that the optimal revenue
increases as the concentration of customers increases. This is intuitive,
since as the firm observes more customers’ valuations per period, it is
making allocation decisions with reduced uncertainty about future bid
values. Moreover, an increase in concentration increases direct bidding
competition amongst customers. The gap reaches over 6% in the ex-
treme case of a single period with 64 customers, which is significant.
The second experiment compares the suboptimality gaps of the DLPCC
mechanism under various levels of capacity and demand. The number of
periods is kept constant at T = 5. The number of customers per period
is fixed at 30, 50 and 100; and for each of these, three choices
of capacity–C = 0.1 T C = 0.3 T and C = 0.5 T —are used.
Results are shown in Table 6.2. The gaps for DLPCC tend to decrease
from left to right (which corresponds to increasing the capacity to de-
mand ratio) and from top to bottom (which corresponds to increasing
proportional number of customers per period and number of units in
stock) in each table. Note that the gaps of 2% or more occur only in the



280 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

case where the number of customers is moderate (such as 10) and the
capacity is constrained

Other numerical experiments of [542] show that the relative benefit of
the dynamic auction increase as the variance in the customer’s reserva-
tion value increases and as the variance in the number of customers

increases. Hence, variability in the demand environment appears to
favor the use of a dynamic auction mechanism.

6.4 Optimal Dynamic Auctions with
Replenishment

We next consider an infinite-horizon auction problem with replenish-
ment, which is essentially the auction equivalent of the dynamic pricing
and inventory problem of Section 5.3.2. A firm orders, stores, and then
sells units of a homogeneous good over an infinite time horizon. The
firm starts a period with an initial (integral) inventory and it reorders
at a unit cost at the end of the period. Replenishment orders arrive
instantly, and we do not allow backlogging. In each period, a convex,
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strictly increasing holding cost of is charged on the starting inven-
tory level 12

The firm sells its goods through a sequence of auctions indexed by
The problem is assumed to be stationary, so the statistics of demand

are the same for all periods Private-value assumptions apply. In each
period, N risk-neutral customers arrive. N is a nonnegative, discrete-
valued random variable distributed according to a known probability
mass function with support [0, M] for some M > 0 and with a
strictly positive first moment. Each customer requires one unit and
has a private valuation i.i.d. with a distribution F(·),
which is strictly increasing with a continuous-density function on
the support We assume that the marginal value J(·) derived from
F(·) is strictly increasing.

As in the single-resource capacity auction case, we use v both for
the random vector of valuations (from the firm’s perspective) and for a
particular realization. The distribution functions and F are constant
through time and are assumed common knowledge to the firm and
all potential customers. We assume that both the number of customers
N and their valuations v are independent from one period to the next.
Thus, each period is an independent draw of N and v.

The firm’s problem is to design an auction mechanism and find a
replenishment policy that maximizes its expected discounted profit. As
before, we analyze this by first finding an optimal allocation and then
finding mechanisms that achieve the optimal allocation.

6.4.1 Dynamic Programming Formulation
We analyze this problem using a dynamic programming formulation

in terms of allocation variables Define the value function
as the maximum expected discounted profit given an initial inventory

which satisfies the Bellman’s equation:

12One can also analyze the case where holding cost is charged on the ending inventory level.
The results are qualitatively the same as long as the holding cost is linear.



282 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

where is the discount factor, is the total number of units
awarded, and is the replenishment order for the next period. Note
from first principles that the state space can be bounded by M because
at most M customers will arrive in any period, and since we can reorder
at the end of every period, there is no need to stock more than M.
Our objective is finding an optimal stationary policy consisting of an
allocation y(·) and a replenishment order that achieves

Assuming J(·) is monotone increasing (Assumption 7.2), it again fol-
lows that if the firm allocates units, it is optimal to allocate them to
the highest (to the highest So, as before, define

and note that is a random function that solves

Therefore, we can rewrite (6.21) in terms of as follows:

Note that above we are assuming that excess stock can be eliminated
without cost (free disposal) when This assumption is not
essential for the analysis, but it helps to simplify the notation.

6.4.2 Optimal Auction and Replenishment Policy
We next characterize the optimal auction and replenishment policy for

this problem. The first statement is presented in algorithmic form [527]:

PROPOSITION 6.8 Consider the inventory-pricing problem described
in (6.23). Define the optimal base-stock level by

Then the optimal stationary policy is to allocate units to customers and
replenish stock as follows:
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STEP 1 (Allocate units):
FOR allocate the unit if either:
(i) and
(ii) and
ELSE GOTO STEP 2.

STEP 2 (Replenish stock):
IF then order up to i.e., ELSE order
nothing

The policy says that while the current inventory is above the optimal
base-stock level (case (i)), then we will award the unit if the benefit
from accepting the bid (its virtual value exceeds the profit
of keeping the unit for the next period less the marginal holding cost
for keeping it. The unit is not replenished in this case. Once the
inventory reaches the optimal level (case (ii)), the firm awards a unit
as long as the benefit from accepting a bid exceeds the cost of replacing
the unit awarded; each such unit is replenished. This policy is illustrated
in Figure 6.4.

An interesting result of this allocation policy is that when the inven-
tory is less than the optimal base-stock level the firm can achieve the
optimal allocation by simply running a standard first-price or second-
price auction in each period with a fixed reserve price

Indeed, the following characterization of the optimal policy in this
case [527]:

PROPOSITION 6.9 Once the inventory reaches units, the optimal pol-
icy in all subsequent periods is to (i) run a standard first- or second-price

auction with fixed reserve price and then (ii) at the end of each
period, order up to the optimal base-stock level

Since the problem is over an infinite horizon and the optimal policy
calls only for ordering when the inventory drops below the firm even-
tually reaches a point where the above simple auction and replenishment
policy are optimal for all remaining time. That is, is the unique re-
current state in the resulting Markov chain that governs the evolution
of the inventory over time under the optimal policy.

This result is significant on several levels. First, it shows that the
classical first-price and second-price mechanisms remain optimal in the
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dynamic-inventory setting. These are both familiar auction mechanisms,
which are easy for customers to understand and easy for firms to imple-
ment. The inventory-replenishment policy is also a familiar and simple
base-stock policy. This combination makes the optimal policy quite prac-
tical. On a theoretical level, the result is as simple as one could hope
for in this setting. Finally, it is convenient as well from a computational
perspective because it reduces the optimal policy to a search over the
single parameter as we show next.

6.4.3 Average-Profit Criterion
Consider maximizing the long-run average profit. One can show that

the optimal policy for the problem is in fact Blackwell op-
timal;13 that is, it is simultaneously optimal for all discounted problems
with discount factors for some As a result, one
can show (see [527]) that the optimal average-profit policy will again be
to run a standard first-price or second-price auction in each period with

13See Bertsekas [57, Section 4.2, Definition 1.1]) for a formal definition of Blackwell optimality.
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reserve price and then order up to a fixed base-stock level
at the end of each period.

Indeed, because of this fact, one can develop a simple procedure for
finding the optimal base-stock level Let

be the average profit when following a policy of reordering up to a fixed
base-stock level We know that such a policy will be optimal for some

therefore, we simply need to search for a value that maximizes
In fact, one can verify that the profit function is concave in and
that can be evaluated by simulation and in special cases
by closed-form expressions. Taking advantage of the concavity of
a binary search over the range for therefore gives an overall algorithm
complexity of O(N log M). Henceforth, we denote the optimal objective
value

6.4.4 Comparison with a List-Price Mechanism
We next consider how the optimal auction policy compares with a

traditional, fixed-price policy. Specifically, we consider the base-stock,
list price policy of Section 5.3.2, in which the firm sets a fixed list price
in each period and then replenishes by ordering up to a fixed base-stock
level To be consistent, we assume we incur the holding cost at the
beginning of the period, and we assume customers who are interested
in acquiring one unit at the posted price submit acceptances. If the
number of acceptances exceeds the current inventory of the firm, we
randomly ration the units to the customers. It is easy to see that under
this pricing mechanism, a dominant strategy for customers is to submit
an acceptance if and only if their own valuations are higher than the list
price.

We compare the profits earned under the optimal mechanism with
those under the base-stock, list-price mechanism for an optimal choice
of  and  We give theoretical comparisons first, followed by a numerical
comparison of the two policies.

6.4.4.1 Theoretical Comparisons
We restrict ourselves to the average-cost case, where the optimal profit

is given by optimizing (6.25) over though similar results can be devel-
oped for the discounted case. One can show the following [527]:

PROPOSITION 6.10 The base-stock, list price policy is optimal when
(i) The number of customers is at most with probability
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one.
(ii) The number of customers is large, and the holding cost is
linear,
(iii) The holding cost is zero,

Part (i) shows that if the firm is receiving isolated bids (as in some
consumer online auctions, such as Priceline.com’s mechanism), there is
no inherent advantage to using auctions over list pricing. Some aggrega-
tion of customers is needed to gain a strict advantage through an auction
mechanism. Intuitively, this is because one needs to generate some bid-
ding competition among customers to realize a benefit from an auction.
With at most one customer bidding, there is no competition. Part (ii) is
analogous to the finite-horizon problem. As the number of customers in
each period becomes large, the fraction with valuations above any given
price converges to a deterministic function of and hence the ratio
of the auction and the fixed-price revenues tends to one. The intuitive
reason for part (iii) is that with no holding cost, the firm will stock the
maximum inventory M at the start of each period under both the op-
timal auction and list price policies. As a result, there is no rationing
of product, and thus customers do not face any bidding competition.
Without bidding competition, the auction produces the same profits as
the base-stock, list price policy.

6.4.4.2 Numerical Comparisons
We next present the results of some numerical simulations from [527]

with the average-profit criterion. The following base case is used as a
starting point. The ordering cost is normalized at customers’
valuations are assumed uniform of width centered at (that
is, customers’ valuations are centered at the cost, with representing
the dispersion in valuations); there are a constant N = 50 customers
per period; and the holding cost is linear of the form where

is the one-period interest rate.
The individual parameters of this base case are varied to see the effect

on the absolute and relative performance of each policy. Along with
expected profit, a fill rate is computed for each policy, defined as the
expected number of customers who are awarded an item divided by the
expected number who attempt to purchase (those with valuations above
the reserve price in the auction or those with valuations above the fixed
price in the base-stock, list price case).14 The fill rate gives a measure of

14 Formally, if denotes the number of customers with valuations greater than
then the fill rate is the ratio in the auction case and

in the list price case, where is the optimal list price.
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the scarcity of inventory relative to demand and is a traditional service
measure in inventory problems.

The first experiment shows how the profit is affected by the number
of customers in each period. The number of customers N is assumed
constant, but N is varied from 1 to 1,000. All other parameters are the
same as in the base case. The results are summarized in Table 6.3. As

one would expect, the profits and inventory levels increase in both poli-
cies as the number of customers increases. Also, as shown theoretically
in Proposition 6.10, the base-stock, list-price mechanism is optimal in
the limiting case of just one customer per period. In the other extreme,
as N gets large, again the base-stock, list price profit approaches the
optimal auction profit, as predicted by the asymptotic result of Propo-
sition 6.10. The biggest benefit from the auction occurs at a moderate
value of five customers per period, where it achieves a 3.2% increase in
profits over list pricing.

Note that the fill rate and inventory level are also higher in the base-
stock, list price case. This suggests that the auction policy deliberately
introduces some scarcity in the available goods to create more bidding
competition among the customers.

The next experiment shows the effect of varying the interest rate
equivalently varying the holding cost rate since (with
in our case). Typically, this interest rate represents a cost of capital plus
a rate of depreciation in the product’s value over time. Table 6.4 shows
the results. The small difference in the expected profits for the lowest
interest rate confirms the result of Proposition 6.10—low holding cost
leads to high inventory levels, which reduces the bidding competition and
hence the benefit of the auction. As the interest rate rises, the auction
performs relatively better, achieving a large 21.67% improvement over
list pricing when the interest rate reaches 10%. This is simply the reverse
effect: a high holding cost means the firm is unwilling to stock much
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inventory. Since the number of customers per period is unchanged, the
number of customers per unit of inventory increases; more competition
among customers is created and hence the auction mechanism performs
relatively better.

It is worth pointing out, however, that there are few practical situa-
tions where interest rates of over 1% per period are observed, especially
if one is considering auctions that are held relatively frequently (such
as weekly). Rates this high are observed for products such as personal
computers, which become obsolete quickly, but for most goods, weekly
rates of less than 1% are the norm. This suggests that either the prod-
uct has to suffer rapid depreciation or selling events have to be relatively
infrequent (such as monthly or semiannual periods, not weekly) for the
firm to realize a significant benefit from using auctions over list pricing.

Finally, as in the finite-horizon problem without replenishment, nu-
merical experiments show that variability in the valuations or vari-
ability in the number of customers N increases the relative benefits of
the auction policy.

6.5 Network Auctions
We next consider an auction mechanism for a network RM prob-

lem of the type studied in Chapter 3, which is based on Cooper and
Menich [129]. Customers in this case bid for products (combinations of
resources), and the firm awards resources based on these product-level
bids. Such auctions are also relevant to procurement settings, where
customers bid for a mix of inputs required to produce a given product.
Customers desire the entire bill of materials (the complete set of re-
sources) and a firm, with stockpiles of the various resources, must solicit
bids and award the resources given a collection of package bids.

We next look at such an auction based on a network version of the
Vickrey (second-price, sealed-bid) auction (a so-called Vickrey-Clarke-
Groves mechanism [533, 120, 226]). We describe the basic mechanism
and the resulting equilibrium bidding strategies and then explore the
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connections between this problem and traditional, network-capacity-
control problems.

6.5.1 Problem Definition and Mechanism
The problem definition and notation are similar to those in Chapter 3,

but are slightly modified to be consistent with the auction notation of
this chapter. There are N customers, each with a private valuation
for one unit of product which requires one or more of resources.
We define if the product required by customer uses resource

and otherwise. The incidence matrix is defined by
The vector of current remaining capacities of the resources is

Because the mechanism is based on a generalized Vickrey
auction, minimal assumptions about customers and their valuations are
needed, as we show below. In fact, we require only that customers are
rational and that their valuations are finite.

The mechanism is defined as follows. As in the classical auction set-
ting, let denote the allocation vector,
denote the payment vector, and denote the
vector of bidding strategies. Customers submit a sealed bid for
their desired product The firm collects all N bids
and then solves the following integer program:

Let  denote an optimal solution to this integer program. The set
of winning customers is denoted

It is important to note that the optimal value of this integer program
is not the revenue earned by the firm; rather, it is solved simply as a
means of determining winners and losers in the auction. The revenue
to the firm will be determined by the vector of payments p(b) that are
requested from the winning customers, which we look at next.

Note that the surplus of customer is

Let denote the unit vector and note that is the vector of
bids with the component replaced by zero—that is, the vector of bids
without the bid of customer Then the scheme calls for the winning
customers to pay
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Note that the term is simply the network benefit
of having customer bid. And also clearly
since when adding customer bid of the optimal value of the problem
(6.26) cannot increase by more than If it is
because other winning bids were displaced to include the bid of customer

in the optimal solution. Hence, represents
the displacement cost produced by including customer in the winning
set, and hence in this scheme a customer pays his displacement cost.
As we show below, this displacement-cost interpretation of the payment
has a close connection to the bid-price values from the network problems
studied in Chapter 3.

6.5.2 Equilibrium Analysis
We next analyze the equilibrium produced by this mechanism. An

important relation is obtained by rewriting (6.28) as

This holds because

which is trivially true when when then it is true
because in this case

Therefore, substituting (6.29) into (6.27), we find that the customer
net utility can be written as

This shows that customer payoff does not depend on his bid but
only on whether his bid places him in the winning set

Thus, as in a second-price auction, one can show that if a
customer bids less than his valuation, it reduces his chances of winning
only in cases where he would have a positive net surplus, and bidding
more than his valuation increases his chance of winning only in cases
where his net surplus is negative. Indeed, one can prove

PROPOSITION 6.11 Under a sealed-bid mechanism with allocations de-
termined by an optimal solution to (6.26) and payments deter-
mined by (6.28), then is a dominant strategy for all cus-
tomers, and hence is a dominant-strategy equilibrium.
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As a result of this fact, we can assume b = v, and the equilibrium
revenue collected by the firm is therefore given by

Note that this revenue is less than since and
when So the revenue collected by the firm is less than the
optimal solution to the integer program (6.26) as claimed.

6.5.3 Relationship to Traditional Auctions
We next show that this mechanism is indeed the network generaliza-

tion of the second-price mechanism in a traditional C-unit auction. To
see this, note we can formulate the C-unit auction as an instance of
the network auction with and In this case, solving the
integer program (6.26) is trivial. We simply award the C items to the
C customers with the highest bids which is the same as the classical
second-price allocation. Also, note that the optimal value is

where denotes the highest bid. As a result, by (6.28) each winner
pays

which is just the usual second-price auction payment with no reserve
price. Thus, the allocations and payments reduce to those of the classical
C-unit second-price auction in the case.

Relationship to Traditional Network RM
This network-auction mechanism also has an interesting connection

to bid prices in traditional network RM. We proceed informally here to
illustrate the ideas, but the connections can be made rigorous.

6.5.4
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Consider the linear programming relaxation of (6.26), which is

Note that this is the exactly same form as the deterministic linear pro-
gramming (DLP) model of Section 3.3.1, interpreting the demands for
product to be one for all Let denote the optimal solution of
(6.30). As in the DLP model, let denote a vector of
optimal dual variables for the capacity constraints

Note that if we remove customer from the problem, then the re-
duction in revenue in this relaxed problem is zero if while if

it is approximately given by15

since removing customer eliminates his bid but frees up a unit of
capacity on each resource used by product and gives the mar-
ginal benefit of this freed-up capacity. So the right-hand side above is
approximately the net benefit of having customer in the problem.

As a result, the amount a winning customer pays from (6.28) is
approximately

Thus, roughly speaking, winning customers pay the bid prices of the set
of resources required by the product they are bidding for.16 Of course,
the actual bidding mechanism uses an integer program rather than a
linear program, but the connection is still close.

For example, if we allow continuous allocations in the auction (cus-
tomers can receive a fractional quantity of the product they bid on and
are willing to accept any quantity between 0 and 1), the two problems

l5Here, we are ignoring the possibility that the dual is degenerate, and we are assuming the
allowable decrease in the right-hand side of the constraints is at least one, so that

measures the change in the optimal objective function when the capacity is reduced by
the vector
16Despite the close connection between bid prices and the price paid by customers in this
network Vickrey auction, the use of the term bid price is purely a coincidence; the two
problems were not connected in the literature or in practice until quite recently.
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coincide exactly. In this case, by linear programming duality, one can
say that a customer gets a positive allocation only if his bid is at
least as large as the sum of the bid prices, The payment of
these customers with positive allocations is also given by the sum of the
bid prices.

6.5.5 Revenue Maximization and Reserve Prices
While the network mechanism outlined above has a well-defined,

dominant-strategy equilibrium, it is not revenue maximizing for the firm.
To see this, suppose that for any customer
This would occur, for example, if the resources required by the product
requested by customer are not capacity constrained, so that includ-
ing as one of the winners would not displace any other winners. In
this case, the payment according to (6.28) is simply There-
fore, any customers requesting unconstrained resources would win and
pay nothing. However, clearly, the firm would increase its revenue by
charging these customers something positive.

Just as in the classical auction, reserve prices can be used to increase
the revenue in the network case. However, there is no theory showing
how to construct optimal reserve prices in this case. Still, one can heuris-
tically consider a scheme whereby the firm imposes reserve prices, de-
noted on each resource and requires each customer to submit bids
that exceed the sum of the reserve prices of the resources requested—
that is, It is still a dominant strategy for customer to bid
his valuation provided it exceed otherwise, his dominant
strategy is not to bid at all.

Numerical results show that one can increase revenue significantly by
using such reserve prices. For example, Table 6.5 shows the simulated
revenues for an example with two resources and three customer types.
Type 1 customers require only resource 1, type 2 customers require only
resource 2, and type 3 customers require both resources 1 and 2. The
number of customers of each type is an independent Poisson random
variable. Customers of types 1 and 2 have valuations with a mean of
100 and variance of 10; customers of type 3 have a valuation with mean
200 and variance of 20. There are 20 units of capacity for each of the two
resources. Two demand scenarios are tested—a high-demand scenario
in which the mean number of customers of each type is 15 and a low-
demand scenario in which the mean number of customers of each type is
5. Symmetric reserve prices are used for each of the two resources, but
they are varied.

Table 6.5 shows the effect of the reserve prices on the average revenues
in the two scenarios. Note that in the high-demand scenario (Poisson-
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15), the reserve price has a minimal effect on the average revenue for low
reserve prices, with a maximum occurring at $70. However, revenues
decrease significantly once the reserve price approaches $100, the mean
valuation that customers have for each resource. In contrast, in the low-
demand scenario (Poisson-5), the reserve price significantly increases
revenues, achieving a maximum with a reserve price of $80. Again,
revenues fall when we increase the reserve price beyond this point. This
behavior is consistent with a traditional C-unit auction, where reserve
prices affect only the revenue when there are fewer than C customers
willing to bid above the reserve price.

6.6 Notes and Sources
The formal study of auctions stems from the seminal work of Vick-

rey [533], who derived the equilibrium strategies and the revenue equiv-
alence of standard first and second-price auctions. The extensive two-
volume collection edited by Klemperer [306] provides an excellent source
for much of the literature on auction theory; see also Klemperer’s [305]
excellent survey article contained therein. Other survey articles on
the private-value model are Matthews [366], McAfee [369], and Mil-
grom [381].

The analysis of optimal auction mechanisms for the private-value
model, as described in Section 6.2.5, stems from the seminal paper of
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Myerson [398], Maskin and Riley [364] extended Myerson’s optimal auc-
tion analysis to multiunit auctions. The optimal discriminatory auction
discussed in Section 6.2.7.3 is addressed in more detail in the survey
of McAfee and McMillan [369] but was again originally due to Myer-
son [398].

The dynamic RM auction model in Section 6.3 is from Vulcano, van
Ryzin, and Maglaras [542]. The infinite-horizon version with replenish-
ment discussed in Section 6.4 is from van Ryzin and Vulcano [527].

The problem and results in Section 6.5 on network auctions are from
Cooper and Menich [129]. For a an in-depth survey of other combinato-
rial auctions, see de Vries and Vohra [156].

APPENDIX 6.A: Proof of the Revenue-Equivalence
Theorem

This surprisingly simple proof of the revenue-equivalence Theorem 6.1 is from
Klemperer [305]:
Proof
Consider any symmetric equilibrium. Let denote the probability that a customer
winning under this equilibrium given his valuation is (a type customer), and let

denote the expected surplus of a customer with valuation defined by

where is the expected payment. Since we are assuming an equilibrium, we must
have that

This follows because is the probability a customer wins if they were to follow
the strategy of a customer with valuation instead of And if a customer with a
valuation wins by doing so, they value the item an amount different from
a type customer. Hence, the right-hand side above is the expected surplus for a
customer of valuation if he follows the strategy of a type customer. However, as
we are in equilibrium, a type customer’s surplus cannot be improved by deviating
from the equilibrium strategy

Considering that a type customer would not want to mimic a type cus-
tomer, we then have

and similarly since a type customer would not want to mimic a type customer,

Combining these two inequalities and we have that

Since by assumption the allocation is increasing in for all then
is increasing in (since , so the above inequalities are
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always feasible. Letting shows

where upon integrating, we obtain

where the last equality follows by the assumption 5(0) = 0 (i.e., customers with
valuation zero have zero expected surplus).

Next, note that the expected payment, is equal to the
expected revenue received by the firm. This means the firm’s expected revenue from
type customer is

To evaluate this, note that by (6.A.1), we have

where the last equality is obtained by integrating by parts, since

Substituting (6.A.3) into (6.A.2), the firm’s expected revenue from each customer
is

where recall that (which is always well defined since, by assumption,
F is strictly increasing, so we always have that Summing over all N
customers, the firm’s total expected revenue is
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Finally, noting that the allocation variable if customer is awarded
an item and is zero otherwise, we have that Hence, the
above expected revenue can be written

QED


